Seeding density of Amaranthus cruentus microgreens under different electrical conductivities of nutrient solutions

Authors

DOI:

https://doi.org/10.35642/rm.v9i1.1573

Keywords:

Amaranth, Biomass, Hydroponic cultivation, Yield

Abstract

The demand for healthier foods and sustainable production has led the agricultural sector to adopt modern techniques and explore new plant species. Microgreens, harvested at the seedling stage, have been gaining popularity, however there is still a lack of information on their cultivation practices. Thus, this study aimed to evaluate the cultivation of amaranth microgreens (Amaranthus cruentus L.) under different seeding densities and electrical conductivity levels (EC). The experimental design consisted of randomized blocks in a split-plot scheme, with four replications. Three EC levels (supply water – ECw of 0.3 dS m-1 and nutrient solutions – ECsol of 1.0 and 2.0 dS m-1) in the plots and four seeding densities (25, 50, 75, and 100 g m-2) in the subplots were used. The amaranth microgreens were exposed to such conditions for eight days in a greenhouse, when the following were evaluated: seedling height (SH), seedling fresh matter (SFM), seedling dry matter (SDM), seedling moisture content (SMC), and seed mass to produce 1 kg of SFM. The lowest yields of amaranth were recorded under irrigation with only water; making it necessary to use nutrient solutions for its cultivation. The SFM was maximized at seeding densities of 70 and 67 g m-2 under ECsol of 1.0 and 2.0 dS m-1, respectively. It is concluded that amaranth can be grown at the seeding density of 70 g m-2 and irrigated with nutrient solution at the EC of 1.0 dS m-1.

Downloads

Download data is not yet available.

Author Biographies

  • Edna de Souza Souza, Universidade Federal do Recôncavo da Bahia

    Graduanda em Agronomia pela Universidade Federal do Recôncavo da Bahia (UFRB), Rua Rui Barbosa, 710, Campus Universitário, CEP: 44380-000, Cruz das Almas, Bahia, Brasil.

  • Mairton Gomes da Silva, Universidade Federal do Recôncavo da Bahia (UFRB)

    Doutorado em Engenharia Agrícola pela Universidade Federal do Recôncavo da Bahia (UFRB). Professor Visitante na UFRB, Rua Rui Barbosa, 710, Campus Universitário, CEP: 44380-000, Cruz das Almas, Bahia, Brasil.

  • Izaiana dos Santos Barros, Universidade Federal do Recôncavo da Bahia

    Graduada em Agronomia pela Universidade Federal do Recôncavo da Bahia (UFRB). Rua Rui Barbosa, 710, Campus Universitário, CEP: 44380-000, Cruz das Almas, Bahia, Brasil.

  • Andressa dos Santos Rodrigues, Universidade Federal do Recôncavo da Bahia

    Graduanda em Agronomia pela Universidade Federal do Recôncavo da Bahia (UFRB), Rua Rui Barbosa, 710, Campus Universitário, CEP: 44380-000, Cruz das Almas, Bahia, Brasil.

  • Hans Raj Gheyi, Universidade Federal do Recôncavo da Bahia

    Doutorado em Ciências Agronômicas pela Université Catholique de Louvain (UCLouvain). Professor aposentado da Universidade Federal de Campina Grande (UFCG), Rua Aprígio Veloso, 882, Bairro: Universitário, CEP: 58.429-900, Campina Grande, Paraíba, Brasil.

  • Toshik Iarley da Silva, Universidade Federal do Recôncavo da Bahia

    Doutorado em Fitotecnia pela Universidade Federal de Viçosa (UFV). Professor Adjunto na Universidade Federal do Recôncavo da Bahia (UFRB), Rua Rui Barbosa, 710, Campus Universitário, CEP: 44380-000, Cruz das Almas, Bahia, Brasil.

  • Allysson Jonhnny Torres Mendonça, Universidade Federal do Recôncavo da Bahia

    Mestrado e doutorando em Engenharia Agrícola pela Universidade Federal de Campina Grande (UFCG), Rua Aprígio Veloso, 882, Bairro: Universitário, CEP: 58.429-900, Campina Grande, Paraíba, Brasil.

References

AMPIM, P. A. Y.; OBENG, E.; GONZALEZ, E. O.; WEERASOORIYA, A.; OSUJI, G. O.; MYERS SR., D. J. The response of Egyptian spinach and vegetable amaranth microgreens to different light regimes. Scientific Journal of Biology & Life Sciences, v. 1, n. 3, p. 1-5, 2021. DOI: https://doi.org/10.33552/SJBLS.2020.01.000512

ARYA, K. S.; KUTTY, M. S.; PRADEEPKUMAR, T. Microgreens of tropical edible-seed species, an economical source of phytonutrients- insights into nutrient content, growth environment and shelf life. Future Foods, v. 8, p. 100262, 2023. DOI: https://doi.org/10.1016/j.fufo.2023.100262

BARROS, I. S.; SILVA, M. G.; SOUZA, E. S.; RODRIGUES, A. S.; SILVA, T. I.; GHEYI, H. R.; PEREIRA, G. S. J.; SACRAMENTO, L. S.; ANDRADE, A. S.; OLIVEIRA, P. S.; SANTOS, E. V. R. Densidade de semeio de microverdes de amaranto sob diferentes condutividades elétricas das soluções nutritivas. Water Resources and Irrigation Management, v. 14, n. 1-3, p. 14-29, 2025. DOI: https://doi.org/10.19149/wrim.v14i1-3.4999

BENINCASA, M. M. P. Análise de crescimento de plantas: Noções básicas. 2. ed. Jaboticabal: FUNEP, 2003. 42p.

BEZERRA, T. J.; SILVA, T. T.; LOSS, R. A.; GERALDI, C. A. Q.; GUEDES, S. F. Importance of microgreen storage conditions: Bibliometric analysis and literature review. Research, Society and Development, v. 11, n. 3, p. e25211326584, 2022. DOI: https://doi.org/10.33448/rsd-v11i3.26584

BULGARI, R.; BALDI, A.; FERRANTE, A.; LENZI, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science, v. 45 n. 2, p. 119-129, 2016. DOI: https://doi.org/10.1080/01140671.2016.1259642

COWDEN, R. J.; MARKUSSEN, B.; GHALEY, B. B.; HENRIKSEN, C. B. The effects of light spectrum and intensity, seeding density, and fertilization on biomass, morphology, and resource use efficiency in three species of Brassicaceae microgreens. Plants, v. 13, n. 1, p. 124, 2024. DOI: https://doi.org/10.3390/plants13010124

DOMÍNGUEZ-DOMÍNGUEZ, A.; HERRERA-CORREDOR, J. A.; ARGUMEDO-MACIAS, A.; RAMÍREZ-RIVERA, E. J.; LÓPEZ-ARANDA, E.; ROMERO-CRUZ, A.; LÓPEZ-ESPÍNDOLA, M. Amaranth microgreens as a potential ingredient for healthy salads: Sensory liking and purchase intent. Agroproductividad, v. 14, n. 4, p. 47-51, 2021. DOI: https://doi.org/10.32854/agrop.v14i4.1933

EL-NAKHEL, C.; PANNICO, A.; GRAZIANI, G.; KYRIACOU, M. C.; GASPARI, A.; RITIENI, A.; DE PASCALE, S.; ROUPHAEL, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy, v. 11, n. 2, p. 346, 2021. DOI: https://doi.org/10.3390/agronomy11020346

FERREIRA, D. F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. DOI: https://doi.org/10.1590/S1413-70542011000600001

FREITAS, I. S.; MELLO, S. C.; NEMALI, K. Supplemental light quality affects optimal seeding density of microgreens. Urban Agriculture & Region Food Systems, v. 9, n. 1, p. e20064, 2024. DOI: https://doi.org/10.1002/uar2.20064.

FURLANI, P. R.; SILVEIRA, L. C. P.; BOLONHEZI, D.; FAQUIN, V. Cultivo hidropônico de plantas. Campinas: Instituto Agronômico, 1999. 52p. (Boletim Técnico, 180).

GONÇALVES-TREVISOLI, E. D. V.; MENDONÇA, H.; DILDEY, O. D. F.; DARTORA, J.; RISSATO, B. B.; COLTRO-RONCATO, S.; ECHER, M. M. Ambience and productive performance of arugula cultivated in different spacing. Scientia Agraria Paranaensis, v. 16, n. 2, p. 230-236, 2017. DOI: https://doi.org/10.18188/1983-1471/sap.v16n1p230-236

GONDIM, A. R. O.; FLORES, M. E. P.; MARTINEZ, H. E. P.; FONTES, P. C. R.; PEREIRA, P. R. G. Condutividade elétrica na produção e nutrição de alface em sistema de cultivo hidropônico NFT. Bioscience Journal, v. 26, n. 6, p. 894-904, 2010. Disponível em: https://seer.ufu.br/index.php/biosciencejournal/article/view/7228/6609. Acesso em: 20 de dez. 2024.

GUNJAL, M.; SINGH, J.; KAUR, J.; KAUR, S.; NANDA, V.; MEHTA, C. M.; BHADARIYA, V.; RASANE, P. Comparative analysis of morphological, nutritional, and bioactive properties of selected microgreens in alternative growing medium. South African Journal of Botany, v. 165, p. 188-201, 2024. DOI: https://doi.org/10.1016/j.sajb.2023.12.038

JOHNSON, S. A.; PRENNI, J. E.; HEUBERGER, A. L.; ISWEIRI, H.; CHAPARRO, J. M.; NEWMAN, S. E.; UCHANSKI, M. E.; OMERIGIC, H. M.; MICHELL, K. A.; BUNNING, M.; FOSTER, M. T.; THOMPSON, H. J.; WEIR, T. L. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity. Current Developments in Nutrition, v. 5, n. 2, p. nzaa180, 2021. DOI: https://doi.org/10.1093/cdn/nzaa180

KEUTGEN, N.; HAUSKNECHT, M.; TOMASZEWSKA-SOWA, M.; KEUTGEN, A. J. Nutritional and sensory quality of two types of cress microgreens depending on the mineral nutrition. Agronomy, v. 11, n. 6, p. 1110, 2021. DOI: https://doi.org/10.3390/agronomy11061110

KYRIACOU, M. C.; EL-NAKHEL, C.; GRAZIANI, G.; PANNICO, A.; SOTERIOU, G. A.; GIORDANO, M.; RITIENI, A.; DE PASCALE, S.; ROUPHAEL, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry, v. 277, p. 107-118, 2019. DOI: https://doi.org/10.1016/j.foodchem.2018.10.098

KYRIACOU, M. C.; ROUPHAEL, Y.; DI GIOIA, F.; KYRATZIS, A.; SERIO, F.; RENNA, M.; DE PASCALE, S.; SANTAMARIA, P. Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology, v. 57, p. 103-115, 2016. DOI: https://doi.org/10.1016/j.tifs.2016.09.005

LERNER, B. L.; STRASSBURGER, A. S.; SCHÄFER, G. Cultivation of arugula microgreens: seed densities and electrical conductivity of nutrient solution in two growing seasons. Bragantia, v. 83, p. e20230183, 2024. DOI: https://doi.org/10.1590/1678-4499.20230183.

MARTA, A. E.; STOICA, F.; OSTACI, S.; JITĂREANU, C. D. The antioxidant profile of some species of microgreens cultivated on hemp and coconut substrate under the action of a biostimulator based on humic acids. Horticulturae, v. 10, n. 12, p. 1238, 2024. DOI: https://doi.org/10.3390/horticulturae10121238

MEAS, S.; LUENGWILAI, K.; THONGKET, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, v. 265, p. 109204, 2020. DOI: https://doi.org/10.1016/j.scienta.2020.109204

MENDES, F. Q.; PURQUERIO, L. F. V.; CARVALHO, R. F.; CECÍLIO FILHO, A. B. White light intensities for maximum yield and quality of arugula microgreens. Pesquisa Agropecuária Tropical, v. 54, p. e79951, 2024. DOI: https://doi.org/10.1590/1983-40632024v5479951

NAGEL, J. C.; SOMMER, L. R.; FREITAG, S. F.; DRIEMEIER, D. S.; HEINZMANN, N.; VALANDRO, G. B. Produção de microverdes de alface Deva em diferentes substratos. Revista Sociedade Científica, v. 7, n. 1, p. 2507-2515, 2024. DOI: https://doi.org/10.61411/rsc202445817

NOLAN, D. A. Effects of seed density and other factors on the yield of microgreens grown hydroponically on burlap. Blacksburg: Virginia Tech, 2018. Master’s Dissertation (Online Master of Agricultural and Life Sciences In Plant Science and Pest Management). School of Plant and Environmental Sciences - Faculty of the Virginia Tech. 44p. Disponível em: https://vtechworks.lib.vt.edu/server/api/core/bitstreams/d9e94756-4eb4-4f31-9ebf-8fb6d97d5f09/content. Acesso em: 20 de dez. 2024.

NTSOANE, M. L. L.; MANHIVI, V. E.; SHOKO, T.; SEKE, F.; MABOKO, M. M.; SIVAKUMAR, D. The phytonutrient content and yield of brassica microgreens grown in soilless media with different seed densities. Horticulturae, v. 9, n. 11, p. 1218, 2023. DOI: https://doi.org/10.3390/horticulturae9111218

OLIVEIRA, F. A.; FREITAS, R. S.; OLIVEIRA, M. K.; SANTOS, S. T.; COSTA, J. P. B.; MORAIS NETA, H. M.; MARQUES, I. C.; CORDEIRO, C. J. X. Electrical conductivity of the nutrient solution for soilless cultivation of kohlrabi. Horticultura Brasileira, v. 40, n. 2, p. 129-135, 2022. DOI: https://doi.org/10.1590/s0102-0536-20220201

PALMITESSA, O. D.; RENNA, M.; CRUPI, P.; LOVECE, A.; CORBO, F.; SANTAMARIA, P. Yield and quality characteristics of Brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution. Foods, v. 9, n. 5, p. 677, 2020. DOI: https://doi.org/10.3390/foods9050677

PINHEIRO, W. D.; WIETH, A. R.; CARVALHO, A. C.; DUARTE, T. S.; SILVA, M. A. S. Hydroponic rocket under different densities and solution concentrations in the autumn and winter period. Brazilian Journal of Development, v. 7, n. 3, p. 23206-23220, 2021. DOI: https://doi.org/10.34117/bjdv7n3-165

PORTELA, I. P.; PEIL, R. M.; ROMBALDI, C. V. Effect of nutrient concentration on growth, yield and quality of strawberries in hydroponic system. Horticultura Brasileira, v. 30, n. 2, p. 266-273, 2012. DOI: https://doi.org/10.1590/S0102-05362012000200014

RAJAN, P.; LADA, R. R.; MACDONALD, M. T. Advancement in indoor vertical farming for microgreen production. American Journal of Plant Sciences, v. 10, n. 8, p. 1397-1408, 2019. DOI: https://doi.org/10.4236/ajps.2019.108100

SANTOS, F. L.; COSTA, E. S.; LIMA, C. S. M. Diferentes substratos no desenvolvimento e na pós-colheita de microverdes de beterraba (Beta vulgaris L.). Revista Iberoamericana de Tecnología Postcosecha, v. 21, n. 2, p. 233-243, 2020. Disponível em: https://www.redalyc.org/journal/813/81365122008/81365122008.pdf. Acesso em: 20 de dez. 2024.

SIGNORE, A.; SOMMA, A.; LEONI, B.; SANTAMARIA, P. Optimising sowing density for microgreens production in rapini, kale and cress. Horticulturae, v. 10, n. 3, p. 274, 2024. DOI: https://doi.org/10.3390/horticulturae10030274

SILVA, M. G.; GHEYI, H. R.; SILVA, L. L.; SOUZA, T. T.; SILVA, P. C. C.; QUEIROZ, L. A.; SANTOS, T. S.; SOARES, T. M. Evaluation of salt and root-zone temperature stresses in leafy vegetables using hydroponics as a clean production cultivation technique in northeastern Brazil. Horticulture, Environment and Biotechnology, v. 65, n. 1, p. 95-118, 2024b. DOI: https://doi.org/10.1007/s13580-023-00547-6

SILVA, M. G.; GOMES, E. G. S.; SACRAMENTO, L. S.; PEREIRA, G. S. J.; GHEYI, H. R.; SILVA, T. I. Implantação de módulo hidropônico no Colégio Municipal Poeta Castro Alves em Cabaceiras do Paraguaçu, Bahia. Revista Macambira, v. 8, n. 1, p. e081044, 2024c. DOI: https://doi.org/10.35642/rm.v8i1.1539

SILVA, M. G.; SACRAMENTO, L. S.; PEREIRA, G. S. J.; RIBEIRO, M. C. B. O.; BARROS, I. S.; GHEYI, H. R. Rocket microgreen cultivation under seeding densities and nutrient solution concentrations. Water Resources and Irrigation Management, v. 13, n. 1-3, p. 60-71, 2024a. DOI: https://doi.org/10.19149/wrim.v13i1-3.4795

WIETH, A. R.; PINHEIRO, W. D.; DUARTE, T. S. Purple cabbage microgreens grown in different substrates and nutritive solution concentrations. Revista Caatinga, v. 32, n. 4, p. 976-985, 2019. DOI: https://doi.org/10.1590/1983-21252019v32n414rc.

WOLOSIK, K.; MARKOWSKA, A. Amaranthus cruentus taxonomy, botanical description, and review of its seed chemical composition. Natural Product Communications, v. 14, n. 5, p. 1-10, 2019. DOI: https://doi.org/10.1177/1934578X19844141

WRUBEL, E. J.; KOESTER, D. L.; LIMA, C. S. M.; SANTOS, E. R. Crescimento e pós-colheita de microverdes de couve-manteiga (Brassica oleracea var. Acephala L.) sob influência de diferentes recipientes e substratos. Brazilian Journal of Food Research, v. 13, n. 4, p. 18-36, 2022. DOI: https://doi.org/10.3895/rebrapa.v13n4.17150

YADAV, L. P.; KOLEY, T. K.; TRIPATHI, A.; SINGH, S. Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agricultural Research, v. 8, n. 2, p. 165-175, 2018. DOI: https://doi.org/10.1007/s40003-018-0378-7

YUSOH, W.; MALAEH, W.; RUANGRAK, E. Increasing qualities of amaranth microgreens under plant factory system by LED light. In: Insan Junior Researchers International Conference, 2022, Nilai. Proceedings… Nilai: Kolej GENIUS Insan USIM, 2022. Disponível em: https://www.researchgate.net/publication/369414565_Increasing_Qualities_of_AmaranthMicrogreens_Under_Plant_Factory_System_by_LED_light. Acesso em: 20 de dez. 2024.

Published

2025-07-26

How to Cite

Seeding density of Amaranthus cruentus microgreens under different electrical conductivities of nutrient solutions. Revista Macambira, [S. l.], v. 9, n. 1, p. 1–19, 2025. DOI: 10.35642/rm.v9i1.1573. Disponível em: https://revista.lapprudes.net/RM/article/view/1573. Acesso em: 29 aug. 2025.