Implementation of an off-grid photovoltaic system in a greenhouse for hydroponic production

Autores/as

DOI:

https://doi.org/10.35642/rm.v9i1.1652

Palabras clave:

Autonomía energética, Cultivo sin suelo, Energía renovable, NFT en tejas, Soluciones sostenibles

Resumen

Hydroponics has emerged as a well-established cultivation technique in recent years, particularly due to its smaller installation area requirements and reduced water consumption compared to traditional soil-based cultivation. Among hydroponic methods, the NFT (Nutrient Film Technique) is the most widely adopted in commercial production. However, its operation relies heavily on electricity to pump nutrient solutions to the cultivation benches. In this context, solar power has been used as a sustainable energy solution to address this dependency. Thus, this study aims to implement a photovoltaic system for powering a hydroponic production greenhouse located in the experimental area of the Postgraduate Program in Agricultural Engineering (PPGEA) at the Federal University of Recôncavo da Bahia (UFRB), Cruz das Almas, Bahia, Brazil. The photovoltaic system was designed to meet the simultaneous energy demand of six submersible aquarium pumps (15 W each), distributed across six independent production units. This off-grid solar system (with battery storage) operates at a 12 V DC nominal voltage. To evaluate the energy self-sufficiency of the solar-powered hydroponic production, four complete lettuce cultivation cycles (46 days of continuous operation) were conducted using two distinct hydroponic systems: a roof sheet-based cultivation and conventional hydroponic channels. The total implementation cost for the photovoltaic system was of R$1,799.09, including the following components: 150 W solar panel, 1000 W power inverter (12 V DC to 110 V AC), 20 A charge controller, two deep-cycle batteries (30 Ah and 70 Ah), electrical wiring, and a circuit breaker. The photovoltaic system demonstrated full energy autonomy throughout the 46-day experimental period, continuously meeting all power demands for hydroponic lettuce cultivation. Total pump runtime reached 141 h 50 min, maintaining a consistent daily operational cycle of 3 h and 5 min. The roof sheet-based cultivation system demonstrated significantly greater fresh shoot biomass production across four successive harvest cycles, with yields of 381.41, 233.76, 272.96, and 240.93 g plant-1 for the four sequential harvests, respectively. These values represent yield increases of 32, 15, 29, and 23% compared to traditional hydroponic channels. Therefore, this study demonstrates that integration of roof sheet-based NFT cultivation with solar energy constitutes an effective solution for small-scale hydroponic farmers, particularly in are where electrical energy is not available or presents frequent failures in supply.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Mairton Gomes da Silva, Universidad Federal del Recôncavo da Bahia

    Doutorado em Engenharia Agrícola pela Universidade Federal do Recôncavo da Bahia (UFRB). Professor Visitante na UFRB.

  • Hans Raj Gheyi, Universidad Federal de Campina Grande

    Doutorado em Ciências Agronômicas pela Université Catholique de Louvain (UCLouvain). Professor aposentado da Universidade Federal de Campina Grande (UFCG).

  • Luan Silva Sacramento, Universidad Federal del Recôncavo da Bahia

    Graduando em Agronomia pela Universidade Federal do Recôncavo da Bahia (UFRB)

  • Glaucia Silva de Jesu Pereira

    Graduanda em Engenharia Florestal pela Universidade Federal do Recôncavo da Bahia (UFRB).

Referencias

AIRA, J.-R.; GALLARDO-SAAVEDRA, S.; EUGENIO-GOZALBO, M.; ALONSO-GÓMEZ, V.; MUÑOZ-GARCÍA, M.-Á.; HERNÁNDEZ-CALLEJO, L. Analysis of the viability of a photovoltaic greenhouse with semi-transparent amorphous silicon (a-Si) glass. Agronomy, v. 11, n. 6, p. 1097, 2021. DOI: https://doi.org/10.3390/agronomy11061097.

ANDRADE, E. C.; TRINDADE, H. I.; OLIVEIRA, G. P.; CASTRO JÚNIOR, W. L.; GOMES NETO, J. J.; SILVA FILHO, R. N.; SILVA, Y. M.; SILVA, S. M. S. A. Análise de um sistema aquapônico utilizando placa solar fotovoltaica no município de Codó-MA. Brazilian Journal of Development, v. 8, n. 3, p. 20558-20572, 2022. DOI: https://doi.org/10.34117/bjdv8n3-319.

ASGARI, N.; JAMIL, U.; PEARCE, J. M. Net zero agrivoltaic arrays for agrotunnel vertical growing systems: Energy analysis and system sizing. Sustainability, v. 16, n. 14, p. 6120, 2024. DOI: https://doi.org/10.3390/su16146120.

BASSI, R. E.; CRUZ, A. A.; SILVA, A.; TOGNOLLI, M. C. S.; COSTA, M. G. A utilização de energia solar para o desenvolvimento de uma proposta de horta hidropônica. In: II Encontro de Gestão e Tecnologia, 2019, São Paulo. Anais... São Paulo: Faculdade de Tecnologia da Zona Leste, 2019. Disponível em: https://www.fateczl.edu.br/engetec/engetec_2019/2_ENGETEC_paper_71.pdf. Acesso em: 26 fev. 2025.

BRANDÃO, L. W. R.; GOMES, A. C. P. C.; SILVA, L. R. S.; ARAÚJO, C. E.; SOUSA, D. B. V.; LEAL, J. E. C. Hidroponia com uso de energia solar - uma forma sustentável de produzir alimentos. In: IX Jornada de Iniciação Científica e Extensão, 2018, Palmas. Anais... Palmas, JICE do Instituto Federal do Tocantins, 2018. Disponível em: https://propi.ifto.edu.br/ocs/index.php/jice/9jice/paper/viewFile/9246/4168. Acesso em: 07 mar. 2025.

CHUA, W. F. D.; LIM, C. L.; KOH, Y. Y.; KOK, C. L. A novel IoT photovoltaic-powered water irrigation control and monitoring system for sustainable city farming. Electronics, v. 13, n. 4, p. 676, 2024. DOI: https://doi.org/10.3390/electronics13040676.

COŞGUN, A. E.; ENDIZ, M. S.; DEMIR, H.; ÖZCAN, M. Agrivoltaic systems for sustainable energy and agriculture integration in Turkey. Heliyon, v. 10, n. 11, p. e32300, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e32300.

COSSU, M.; TILOCA, M. T.; COSSU, A.; DELIGIOS, P. A.; PALA, T.; LEDDA, L. Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce. Applied Energy, v. 344, p. 121278, 2023. DOI: https://doi.org/10.1016/j.apenergy.2023.121278.

COSTA, L. F.; AZEVEDO NETO, A. D.; SOARES, T. M.; SANTOS, I. L. N.; SILVA, M. G.; SILVA, P. V. S. R.; FERREIRA, W. J. O.; ROSARIO, A. S. Produtividade e tolerância salina da alface e da rúcula em diferentes sistemas hidropônicos com águas salobras. Water Resources and Irrigation Management, v. 14, n. 1-3, p. 88-108, 2025. DOI: https://doi.org/10.19149/wrim.v14i1-3.5255.

FURLANI, P. R.; SILVEIRA, L. C. P.; BOLONHEZI, D.; FAQUIN, V. Cultivo hidropônico de plantas. Campinas: Instituto Agronômico, 1999. 52p. (Boletim Técnico, 180).

GHASEMI-MOBTAKER, H.; ATAIEE, F. S.; AKRAM, A.; KAAB, A. Feasibility study of using photovoltaic cells for a commercial hydroponic greenhouse: Energy analysis and life cycle assessment. e-Prime - Advances in Electrical Engineering, Electronics and Energy, v. 8, p. 100597, 2024. DOI: https://doi.org/10.1016/j.prime.2024.100597.

GHOLAMI, M.; AREFI, A.; HASAN, A.; LI, C.; MUYEEN, S. M. Enhancing energy autonomy of greenhouses with semi-transparent photovoltaic systems through a comparative study of battery storage systems. Scientific Reports, v. 15, p. 2213, 2025. DOI: https://doi.org/10.1038/s41598-025-85418-z.

KARIM, M. H.; DIANTORO, M.; NASIKHUDIN, N.; LESTAR, S. R. Implementation of agricultural technology urban farming agrivoltaic based system to increase productivity and empowerment of farmer women’s community. Journal of Community Service and Empowerment, v. 4, n. 1, p. 184-195, 2023. DOI: https://doi.org/10.22219/jcse/v4i1.25013.

LACHHEB, A.; MAROUANI, R.; MAHAMAT, C.; SKOURI, S.; BOUADILA, S. Fostering sustainability through the integration of renewable energy in an agricultural hydroponic greenhouse. Engineering, Technology & Applied Science Research, v. 14, n. 2, p. 13398-13407, 2024. DOI: https://doi.org/10.48084/etasr.6939.

MAROUANI, R.; MAHAMAT, C.; KHACHROUMI, S.; BOUADILA, S.; CHERIF, A. Smart PV hydroponic greenhouse for sustainable agriculture in Tunisia. Engineering, Technology & Applied Science Research, v. 14, n. 3, p. 14411-14419, 2024. DOI: https://doi.org/10.48084/etasr.7278.

OGBOLUMANI, O. A.; MABASO, B. An IoT-based hydroponic monitoring and control system for sustainable food production. Journal of Digital Food, Energy & Water Systems, v. 4, n. 2, p. 106-140, 2023. DOI: https://doi.org/10.36615/digital_food_energy_water_systems.v4i2.2873.

OLIVEIRA, T. F.; SANTOS JUNIOR, J. A.; SILVA, M. G.; GHEYI, H. R.; ALMEIDA, J. C.; GUISELINI, C. Cultivation of chicory under nutrient solutions prepared in brackish waters and applied at different temperatures. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 27, n. 9, p. 719-728, 2023. DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n9p719-728.

PEREIRA, H. M. P.; MENDES, L. F. R. Análise de rendimento do sistema de bombeamento de água por energia solar fotovoltaica para irrigação de um viveiro de mudas. Revista Vértices, v. 21, n. 3, p. 463-494, 2019. DOI: https://doi.org/10.19180/1809-2667.v21n32019p463-494.

SANGEETHA, V.; SINDHU, C.; SREEKEERTHI, S.; VASANTHA, V.; AGALYA, P. Solar power based hydroponics monitoring system. International Journal of Research in Engineering, Science and Management, v. 3, n. 6, p. 66-71, 2020. Disponível em: https://www.ijresm.com/Vol.3_2020/Vol3_Iss6_June20/IJRESM_V3_I6_19.pdf. Acesso em: 09 mar. 2025.

SANTOS, G. A. O.; JORGE, R. M. M.; FARIAS, F. O.; MATHIAS, A. L. Perspective on the use of agrivoltaic systems for the production of secondary metabolites applicable to food: the case for mint. Brazilian Archives of Biology and Technology, v. 67, e24240160, 2024. DOI: https://doi.org/10.1590/1678-4324-2024240160.

SHAKER, A. C.; SRIVALLI, L. S.; SHARANYA, K.; AKHILA, D.; CHANDANA, T. M. Automated hydroponic system with solar powered battery management system. International Journal for Research in Applied Science & Engineering Technology, v. 11, n. 7, p. 748-753, 2023. DOI: https://doi.org/10.22214/ijraset.2023.54649.

SILVA, C. F. R. Energia fotovoltaica aplicada em sistema hidropônico. 2022. 11f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Controle e Automação) – Pontifícia Universidade Católica de Goiás, Goiânia, 2022. Disponível em: https://repositorio.pucgoias.edu.br/jspui/handle/123456789/4972. Acesso em: 25 fev. 2025.

SILVA, F. V. P.; FEITOSA, H. O.; PEREIRA, C. F.; SILVA, J. A. S.; FEITOSA, E. O. Potencial de energia solar para a irrigação no município de Barbalha-CE. Energia na Agricultura, v. 32, n. 1, p. 57-64, 2017. DOI: http://dx.doi.org/10.17224/EnergAgric.2017v32n1p57-64.

SILVA, M. G.; COSTA, I. P.; ALVES, L. S.; SOARES, T. M.; GHEYI, H. R. Coriander cultivation under different nutrient solution depths in hydroponic systems: a comparison between conventional DFT and adapted DFT with PVC pipes. Water Resources and Irrigation Management, v. 12, n. 1-3, p. 29-43, 2023a. DOI: https://doi.org/10.19149/wrim.v12i1-3.3077.

SILVA, M. G.; GHEYI, H. R.; SILVA, L. L.; SILVA, P. C. C.; CORREIA, M. R. S.; QUEIROZ, L. A.; SANTOS, T. S.; JESUS, M. J. S. Plant density to compensate for coriander production losses caused by the isolated and/or combined effects of salt and root-zone temperature stresses. Water Resources and Irrigation Management, v. 13, n. 1-3, p. 32-59, 2024b. DOI: https://doi.org/10.19149/wrim.v13i1-3.3582.

SILVA, M. G.; GHEYI, H. R.; SILVA, L. L.; SOUZA, T. T.; SILVA, P. C. C.; QUEIROZ, L. A.; SANTOS, T. S.; SOARES, T. M. Evaluation of salt and root-zone temperature stresses in leafy vegetables using hydroponics as a clean production cultivation technique in northeastern Brazil. Horticulture, Environment and Biotechnology, v. 65, n. 1, p. 95-118, 2024c. DOI: https://doi.org/10.1007/s13580-023-00547-6.

SILVA, M. G.; GOMES, E. G. S.; SACRAMENTO, L. S.; PEREIRA, G. S. J.; GHEYI, H. R.; SILVA, T. I. Implantação de módulo hidropônico no Colégio Municipal Poeta Castro Alves em Cabaceiras do Paraguaçu, Bahia. Revista Macambira, v. 8, n. 1, p. e081044, 2024a. DOI: https://doi.org/10.35642/rm.v8i1.1539.

SILVA, M. G.; SOARES, T. M.; GHEYI, H. R.; COSTA, I. P.; VASCONCELOS, R. S. Growth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. Emirates Journal of Food and Agriculture, v. 32, n. 4, p. 281-294, 2020a. DOI: https://doi.org/10.9755/ejfa.2020.v32.i4.2094.

SILVA, M. G.; SOARES, T. M.; GHEYI, H. R.; OLIVEIRA, M. G. B.; SANTOS, C. C. Hydroponic cultivation of coriander using fresh and brackish waters with different temperatures of the nutrient solution. Engenharia Agrícola, v. 40, n. 6, p. 674-683, 2020b. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v40n6p674-683/2020.

SILVA, M. G.; SOARES, T. M.; GHEYI, H. R.; SANTOS, C. C.; OLIVEIRA, M. G. B. Hydroponic cultivation of coriander intercropped with rocket subjected to saline and thermal stresses in the root-zone. Revista Ceres, v. 69, n. 2, p. 148-157, 2022. DOI: https://doi.org/10.1590/0034-737X202269020004.

SILVA, P. C. C.; GHEYI, H. R.; JESUS, M. J. S.; CORREIA, M. R. S.; AZEVEDO NETO, A. D. Seed priming with hydrogen peroxide enhances tolerance to salt stress of hydroponic lettuce. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 27, n. 9, p. 704-711, 2023b. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v27n9p704-711.

SILVA, P. V. S. R. Procedimento para obtenção das respostas da alface à salinidade em hidroponia e solo. 2023. 155f. Tese (Doutorado em Engenharia Agrícola) – Universidade Federal do Recôncavo da Bahia, Cruz das Almas, 2023. Disponível em: https://www1.ufrb.edu.br/pgea/images/Teses/Tese_Paulo_Vitor.pdf. Acesso em: 01 abr. 2025.

SOUSA, D. B. V.; VOGADO, G. R.; GONÇALVES, A. C. S.; ROCHA, A. S.; CABRAL NETO, O.; ROSANOVA, C.; ROCHA, B. F. O. S.; PEREIRA, J. D. N. Produção hidropônica associada ao uso de energia solar. In: CABRAL NETO, O.; ROCHA, A. S.; GONÇALVES, A. C. S.; ROSANOVA, C.; RODRIGUES, F. M.; VIROL, S. L. M. (Org.). Pesquisa e Tecnologia em Ciências Agrárias. Rio de Janeiro: Editora e-Publicar, 2023. p. 136-143. DOI: https://doi.org/10.47402/ed.ep.c2023198812907.

SOUZA, S. V.; GIMENES, R. M. T. Viabilidade econômica da utilização de energia solar em sistemas de produção hidropônica. Informe GEPEC, v. 22, n. 2, p. 27-45, 2018. DOI: https://doi.org/10.48075/igepec.v22i2.19901.

SUDARSO, H.; TAQWA, A.; KUSUMANTO, R. Design and implementation of solar power system on lettuce hydroponic greenhouse in Sekayu Musi Banyuasin Regency South Sumatera Province. International Journal of Research in Vocational Studies, v. 3, n. 2, p. 29-33, 2023. DOI: https://doi.org/10.53893/ijrvocas.v3i2.208.

WALLER, R.; KACIRA, M.; MAGADLEY, E.; TEITEL, M.; YEHIA, I. Semi-transparent organic photovoltaics applied as greenhouse shade for spring and summer tomato production in arid climate. Agronomy, v. 11, n. 6, p. 1152, 2021. https://doi.org/10.3390/agronomy11061152.

ZHANG, Y.; CHEN, T.; GASPARRI, E.; LUCCHI, E. A modular agrivoltaics building envelope integrating thin-film photovoltaics and hydroponic urban farming systems: A circular design approach with the multi-objective optimization of energy, light, water and structure. Sustainability, v. 17, n. 2, p. 666, 2025. DOI: https://doi.org/10.3390/su17020666.

Publicado

2025-11-04

Cómo citar

Implementation of an off-grid photovoltaic system in a greenhouse for hydroponic production. Revista Macambira, [S. l.], v. 9, n. 1, p. 1–23, 2025. DOI: 10.35642/rm.v9i1.1652. Disponível em: https://revista.lapprudes.net/RM/article/view/1652. Acesso em: 5 nov. 2025.