Next-Generation Sequencing (NGS): new technologies to access microbial communities

Authors

DOI:

https://doi.org/10.35642/rm.v8i1.1248

Keywords:

Sequencing, Technologies, Microorganisms, Diversity, Data

Abstract

Next-Generation Sequencing (NGS) are platforms capable of generating millions of DNA or RNA sequence data in a single round through in vitro cloning, a technique used to amplify the number of molecules for analysis. However, it is necessary to gather information that enables researchers to determine the best methodology for their work. Therefore, the objective of this article is to conduct a literature review on NGS technologies, comparing them with each other and with more traditional methods, highlighting their importance in agricultural and environmental microbiology. The Sanger method is currently the most well-known sequencing technique. However, NGS platforms employ methodologies that streamline sequencing and the advancement in these techniques have significantly reduced sequencing costs. To carry out the studies, data from articles and platforms developed by companies that own these technologies were used to perform comparisons and analyses on the topic. Therefore, this manuscript is a bibliographic research and characterized as review article. While several second-generation sequencing platforms are available on the market, most are expensive and restricted to a few countries. There is still difficulty in finding suitable algorithms to analyze the amount of data generated. Nevertheless, NGS methods have generated good expectations and promise important advancements in studies aimed at accessing and identifying the groups that make up the microbial community structure in environmental research.

Downloads

Download data is not yet available.

Author Biography

Djalma Moreira Santana Filho, Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Itapetinga

Graduado em Engenharia Agronômica (UFBA). Mestrado em Microbiologia Agrícola (UFRB). Doutor em Ciências Agrárias (UFRB). Servidora do Instituto Federal de Educação, Ciência e Tecnologia Baiano Campus Itapetinga, Bahia.

References

ALDERBORN, A.; KRISTOFFERSON, A.; HAMMERLING, U. Determination of Single-Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome research, v.10, p.1249–1258, 2000. DOI: https://doi.org/10.1101/gr.10.8.1249.

ALLEN, R. A.; WILLIAMS, C. L.; PENROD, Y.; MCCLOSKEY, C.; CARPENTER‐AZEVEDO, K.; HUARD, R. C.; KING, E.; DUNN, S. T. A pyrosequencing protocol for rapid identification of SARS‐CoV‐2 variants. Journal of Medical Virology, v. 94, n. 8, p. 3661-3668, 2022. DOI: https://doi.org/10.1002/jmv.27770.

ANDREOTO, F.D. Análise genômica e transcriptômica de Methylobacterium mesophilicum SR1.6/6 em interação com a planta hospedeira. 2011. 80f. Dissertação (Mestrado) - Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba-SP, 2011.

ANJOS, L. M. Diversidade genética de Plasmopara viticola e mapeamento de QTLs de resistência ao míldio em videira (Vitis spp.). Brasília, Novembro 2013.277p. : il. Tese (Doutorado). Programa de Pós-graduação em Fitopatologia, Universidade de Brasília, Brasília. 227p. 2013.

ANSORGE, Wilhelm J. Next-generation DNA sequencing techniques. New biotechnology, v. 25, n. 4, p. 195-203, 2009. DOI: https://doi.org/10.1016/j.nbt.2008.12.009

ATHANASOPOULOU, K.; BOTI, M. A.; ADAMOPOULOS, P. G.; SKOUROU, P. C.; SCORILAS, A. Third-generation sequencing: the spearhead towards the radical transformation of modern genomics. Life, v. 12, n. 1, p. 30, 2021. DOI: https://doi.org/10.3390/life12010030.

BARBA, M.; CZOSNEK, H.; HADIDI, A. Historical perspective, development and applications of next-generation sequencing in plant virology. Virus, v.6, p.106-136, 2014. DOI: https://doi.org/10.3390/v6010106

BOISVERT, S.; LAVIOLETTE, F.; CORBEIL, J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. Journal of computational biology, v.17, p.1519–1533, 2010. DOI: https://doi.org/10.1089/cmb.2009.0238

BOKULICH, N. A. et al. Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine. Plos one, v.8, n. 10, p.1-10, 2012. DOI: https://doi.org/10.1371/journal.pone.0036357

BROWN, S. P.; CALLAHAM JR, M. C.; OLIVER, A. K.; JUMPPONEN, A. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem. FEMS Microbiology Ecology, v. 86, p.557–566, 2013. DOI: https://doi.org/10.1111/1574-6941.12181.

BUTLER, J.; MACCALLUM, I.; KLEBER, M.; SHLYAKHTER, I. A.; BELMONTE, M. K.; LANDER,E. S.; NUSBAUM, C. ; JAFFE, D. B. Allpaths: de novo assembly of wholegenome shotgun microreads. Genome Research, v.18, p. 810–820, 2008. DOI: https://doi.org/10.1101/gr.7337908

CAPORASO, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME journal, v.6, n. 8, p.1621–1624, 2012. DOI: https://doi.org/10.1038/ismej.2012.8.

CHEVREUX, B. MIRA: an automated genome and EST assembler. 2007. Disponível em: https://archiv.ub.uni-heidelberg.de/volltextserver/7871/1/thesis_zusammenfassung.pdf. Acesso em: 01 jul. 2016.

CHEVREUX, B.; WETTER, T.; SUHAI, S. Genome sequence assembly using trace signals and additional sequence information. Journal of Computer Science & Systems Biology, v.99, p. 45–56, 1999. Disponível em: https://xueshu.baidu.com/usercenter/paper/show?paperid=871ec78542a2b2c43b1a3ce337066be1. Acesso em: 01 jul. 2016.

COLLINS, M. D.; HUTSON, R. A.; FALSEN. E.; SJÖDÉN, B. Facklamia tabacinasalis sp. nov., from powdered tobacco. International journal of systematic bacteriology, v.49, p.1247-1250, 1999. DOI: https://doi.org/10.1099/00207713-49-3-1247.

CONWAY, T. C.; BROMAGE, A. J. Succinct data structures for assembling large genomes. Bioinformatics, v.27, p.479–486, 2011. DOI: https://doi.org/10.1093/bioinformatics/btq697

COUTO, A. D.; CERQUEIRA, F. R.; GUERRA, R. L.; GONÇALVES, L. B.; GOULART, C. C.; SIQUEIRA-BATISTA, R.; FERREIRA, R. S.; OLIVEIRA, A. P. Theoretical basis of a new method for dna fragment assembly in k-mer graphs. 31st International Conference of the Chilean Computer Science Society, 2012. DOI: https://doi.org/10.1109/SCCC.2012.16

DI MAIUTA, N. et al. Microbial population dynamics in the faeces of wood-eating loricariid catfishes. Letters in applied microbiology, v.56, n. 6, p.401-407, 2013. DOI: https://doi.org/10.1111/lam.12061.

DURBIN, R. M. et al. A map of human genome variation from population-scale sequencing. Nature, v. 467, p.1061-1073, 2010. DOI: https://doi.org/10.1038/nature09534.

FELSKE, A.; AKKERMANS, A. D. L.; VOS, W. M. In situ detection of an uncultured predominant bacillus in Dutch grassland soils. Applied and environmental microbiology, v.64, p.4588–4590, 1998. DOI: https://doi.org/10.1128/AEM.64.11.4588-4590.1998

HALL, N. Advantages sequencing technologies and their wider impact in microbiology. The journal of experimental biology, v. 209, p.1518-1525, 2007. DOI: https://doi.org/10.1242/jeb.001370

HU, T.; CHITNIS, N.; MONOS, D.; DINH, A. Next-generation sequencing technologies: An overview. Human Immunology, v. 82, n. 11, p. 801-811, 2021. DOI: https://doi.org/10.1016/j.humimm.2021.02.012.

HUSE, S. M.; HUBER, J. A.; MORRISON, H. G.; SOGIN, M. L.; WELCH, D. M. Accuracy and quality of massively parallel DNA pyrossequencing. Genome biology, v.8, p.1-9, 2007. DOI: https://doi.org/10.1186/gb-2007-8-7-r143

KOCHE, J. C. Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. 34. ed. Petrópolis, RJ: Vozes, 2015.

LANDER, E.S. et al. Initial sequencing and analysing of the human genome. Nature, v. 409, p.860-921, 2001. DOI: https://doi.org/10.1038/35057062.

LEMOS, L. N.; FULTHORPE, R. R.; TRIPLETT, E. W.; ROESCH, L. F.. Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of microbiological methods, v.86, p.42–51, 2011. DOI: https://doi.org/10.1016/j.mimet.2011.03.014

LI, R.; ZHU, H.; RUAN, J.; QIAN, W.; FANG, X.; SHI, Z.; LI, Y.; LI, S. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome research, v.20, p.265–272, 2010. DOI: https://doi.org/10.1101/gr.097261.109

LIFE TECHNOLOGIES CORPORATION. Longer read lengths improve bacterial identification using 16s rRNA Gene Sequencing on Theion PGM™ System. Your Innovative Research, p.1-6, 2013. Disponível em: https://assets.thermofisher.com/TFS-Assets/LSG/brochures/16S-rRNA-Gene-Sequencing-App-Note.pdf. Acesso em: 20 mar. 2016.

LIMA, Milena Tavares. Análise funcional de um consórcio microbiano de solo e prospecção de genes envolvidos na desconstrução da biomassa. 2014. iii, 45 p. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, 2014. Disponível em: http://hdl.handle.net/11449/121846. Acesso em: 20 mar. 2016.

LIU, L.; LI, Y.; LI, S.; HU, N.; HE, Y.; PONG, R.; LIN, D.; LU, L.; LAW, M. Comparison of Next-Generation Sequencing Systems. Journal of biomedicine and biotechnology, p.1-12, 2012. DOI: https://doi.org/10.1155/2012/251364.

LOMAN, N. J.; MISRA, R. V.; DALLMAN, T. J.; CONSTANTINIDOU, C.; GHARBIA, S. E.; WAIN, J.; PALLEN, M. J. Performance comparison of benchtop high-throughput sequencing platforms. Nature biotechnology, v.30, n.5, p.434-562, 2012. DOI: https://doi.org/10.1038/nbt.2198.

MA, J.; WANG, Z.; ZOU, X.; FENG, J.; WU, Z.Microbial communities in an anaerobic dynamic membrane bioreactor (AnDMBR) for municipal wastewater treatment: Comparison of bulk sludge and cake layer. Process biochemistry, v.48, n. 3, p.510–516, 2013. DOI: https://doi.org/10.1016/j.procbio.2013.02.003

MADROÑERO, L. J. Análise trancriptômica da interação mamoeiro-Papaya Meleira Virus. 2014. 76 f. : il. Dissertação (Mestrado em Biotecnologia) – Universidade Federal do Espírito Santo, Centro de Ciências da Saúde.

MADSEN, A.M.; ZERVAS, A.; TENDAL, K.; NIELSEN, J. L. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illuminas equencing and MALDI TOF. Environmental research, v.140, p.255–267, 2015. DOI: https://doi.org/10.1016/j.envres.2015.03.027

MARGULIES, M. et al. Genome Sequencing in Open Microfabricated High Density Picoliter Reactors. Nature, v. 437, p. 376–380. 2005. DOI: https://doi.org/10.1038/nature03959.

MILLER, J. R.; KOREN, S.; SUTTON, G. Assembly algorithms for next-generation sequencing data. Genomics, v.95, p. 315-327, 2010. DOI: https://doi.org/10.1016/j.ygeno.2010.03.001.

MYERS, E. W. et al. A whole-genome assembly of drosophila. Science, v.287, p.2196–2204, 2000. DOI: https://doi.org/10.1126/science.287.5461.2196

NAGARAJAN, N.; POP, M. Sequence assembly demystified. Nature Review Genetics, v.14, p.157–167, 2013. DOI: https://doi.org/10.1038/nrg3367

NIKOLAKI, S.; TSIAMIS, G. Microbial diversity in the era of omic technologies. BioMed Research International, v.2013, p.1-15, 2013. DOI: http://dx.doi.org/10.1155/2013/958719

OLSON, M. V. The human genome project. Proceedings of the National Academy of Sciences, v. 90, n. 10, p. 4338-4344, 1993. DOI: https://doi.org/10.1073/pnas.90.10.4338.

ORLANDO, L. et al. True single-molecule DNA sequencing of a pleistocene horse bone. Genome Research, v. 21, p. 1705–1719. DOI: https://doi.org/10.1101/gr.122747.111

OXFORD NANOPORE TECHNOLOGIES. Disponível em: www.nanoporetech.com. Acesso em: 01 jul. 2016.

PETTERSSON, E.; LUNDEBERG, J.; AHMADIAN, A. Generations of sequencing technologies. Genomics, v. 93, n. 2, p. 105-111, 2009. DOI: https://doi.org/10.1016/j.ygeno.2008.10.003.

PYLRO, V. S.; ROESCH, L. F. W.; MORAIS, D. K.; CLARK, I. M.; HIRSCH, P. R.; TÓTOLA, M. R. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. Journal of Microbiological Methods, v.107, p.30–37, 2014. DOI: https://doi.org/10.1016/j.mimet.2014.08.018

PEVZNER, P.A.; TANG, H., WATERMAN, M.S. An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences, vol. 98, no. 17, 9748-9753, 2001. DOI: https://doi.org/10.1073/pnas.171285098.

QUICK, J.; QUINLAN, A.R.; LOMAN, N.J. A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer. GigaScience, v.3, n.22, p.1-6, 2014. DOI: https://doi.org/10.1186/2047-217X-3-22

RAMACHANDRAN, A.; LIU, Y.; ASQHAR, W.; IQBAL, S. M. Characterization of DNA-nanopore INteretions by Molecular Dynamics. American journal of biomedical sciences, v.1, p.344-351, 2009. DOI: https://doi.org/10.5099/aj090400344.

RAUEN, F. J. Roteiros de investigação científica. 2. ed. Tubarão: Unisul, 2018.

RAVIN, N. V. Modern Methods of Genome Sequencing and Their Application for Deciphering Genomes of Microorganisms. Applied Biochemistry and Microbiology, V.46, p.663–670, 2010. DOI: http://dx.doi.org/10.1134/S000368381007001X.

RHOADS, A.; AU, K. F. PacBio sequencing and its applications. Genomics proteomics bioinformatics, v.13, p.278–289, 2015. DOI: http://dx.doi.org/10.1016/j.gpb.2015.08.002.

ROBERTS, R.J.; CARNEIRO, M.O.; SCHARTZ, M.C. The advantages of SMRT sequencing. Genome biology, v.14, n.405, p.1-4, 2013. DOI: http://doi.org/10.1186/gb-2013-14-7-405.

ROESCH, L.F.W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME journal, v.1, n. 4, p.283–290, 2007. DOI: http://doi.org/10.1038/ismej.2007.53

RONAGHI, M. Pyrosequencing Sheds Light on DNA Sequencing. Genome research, v.11, p.3-11, 2001. DOI: http://doi.org/10.1101/gr.11.1.3.

RONAGHI, M.; KARAMOHAMED, S.; PETTERSON, B.; UHLÉN, M.; NYRÉN, P. Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Analytical Biochemistry, v.242, p.84-89, 1996. DOI: http://dx.doi.org/10.1006/abio.1996.0432.

SANGER, F.; COULSON, A. R.; BARREL, B. G.; SMITH, A. J. H.; ROE, B. A. Cloning in Single-stranded Bacteriophage as an Aid to Rapid DNA Sequencing. J. Mol. Biol. v.143, p.161-178, 1980. DOI: https://doi.org/10.1016/0022-2836(80)90196-5.

SANGER, F.; COULSON, A. R.; FRIEDMANN, T.; AIR, G. M.; BARRELL, B. G.; BROWN, N. L.; FIDDES, J. C.; HUTCHISON, C. A.; SLOCOMBE, P. M.; SMITH, M. The Nucleotide Sequence of Bacteriophage ØX174. Journal of molecular biology, v.125, p.225-246, 1978. DOI: https://doi.org/10.1016/0022-2836(78)90346-7.

SANGER, F.; NICKLEN, S.; COULSON, A.R. DNA sequencing with chain-terminating inhibitors. Procedings of the national academy of sciences USA, v.74, p.5463-5467, 1977. DOI: https://doi.org/10.1073/pnas.74.12.5463.

SATAM, H.; JOSHI, K.; MANGROLIA, U.; WAGHOO, S.; ZAIDI, G.; RAWOOL, S.; TRAKARE, R. P.; BANDAY, S.; MISHRA, A. K.; DAS, G; MALONIA, S. K. Next-generation sequencing technology: current trends and advancements. Biology, v. 12, n. 7, p. 997, 2023. DOI: https://doi.org/10.3390/biology12070997.

SCHADT, E. E.; TURNER, S.; KASARSKIS, A. A window into third-generation sequencing. Human Molecular Genetics, v.19, p.227–240, 2010. DOI: https://doi.org/10.1093/hmg/ddq416.

SCHATZ, M. C.; DELCHER, A. L.; SALZBERG, S. L. Assembly of large genomes using second-generation sequencing. Genome research, v.20, pp.1165–1173, 2010. DOI: https://doi.org/10.1101/gr.101360.109

SEQUENCING PLATFORMS. Disponível em: http://www.illumina.com. Acesso em: 20 dez. 2014.

SHENDURE, J.; JI, H. Next-generation DNA sequencing. Nature Biotecnologie, v.26, p.1135-1145, 2008. DOI: https://doi.org/10.1038/nbt1486

SHOKRALLA, S.; SPALL,J. L.; GIBSON, J. F.; HAJIBABAEI, M. Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, v.21, p.1794–1805, 2012. DOI: https://doi.org/10.1111/j.1365-294X.2012.05538.x.

SILVA, K. N. Caracterização molecular de Johnsongrass mosaic virus em plantas forrageiras dos gêneros Brachiaria, Panicum e Pennisetum. Brasília, 2015.p.111. Dissertação (Mestrado). Programa de Pós-graduação em Fitopatologia, Universidade de Brasília, Brasília.

SIMPSON, J. T.; WONG, K.; JACKMAN, S. D.; SCHEIN, J. E.; JONES, S. J.; BIROL,N. Abyss: A parallel assembler for short read sequence data. Genome research, v.19, p. 1117–1123, 2009. DOI: https://doi.org/10.1101/gr.089532.108

SOMMER, D.; DELCHER, A.; SALZBERG, S. ; POP, M. Minimus: a fast, lightweight genome assembler. BMC bioinformatics, v.8, p.1-11, 2007. DOI: https://doi.org/10.1186/1471-2105-8-64

STADEN, R. A Strategy of DNA sequencing employing computer programs. Nucelic Acids Research, v.6, n.7, p.1-10, 1979. DOI: https://doi.org/10.1093/nar/6.7.2601

SUMINDA, G. G. D.; GHOSH, M.; SON, Y. The innovative informatics approaches of high-throughput technologies in livestock: spearheading the sustainability and resiliency of agrigenomics research. Life, v. 12, n. 11, p. 1893, 2022. DOI: https://doi.org/10.3390/life12111893.

TREFFER, R.; DECKER, V. Recent advances in single-molecule sequencing. Current Opinion in Biotechnology, v.21, n. 1, p.4–11, 2010. DOI: https://doi.org/10.1016/j.copbio.2010.02.009

WANG, Y.; ZHAO, Y.; BOLLAS, A.; WANG, Y.; AU, K. F. Nanopore sequencing technology, bioinformatics and applications. Nature biotechnology, v. 39, n. 11, p. 1348-1365, 2021. DOI: https://doi.org/10.1038/s41587-021-01108-x.

YERGEAU, E.; LAWRENCE, J. R.; SANSCHAGRIN, S.; WAISER, M. J.; KORBER, D. R.; GREER, C. W. Next-Generation Sequencing of Microbial Communities in the Athabasca River and Its Tributaries in Relation to Oil Sands Mining Activities. Applied and environmental microbiology, v.78, n.21, p.7626–7637, 2012. DOI: https://doi.org/10.1128/AEM.02036-12

ZERBINO, D. R.; BIRNEY, E. Velvet: Algorithms for de novo short read assembly using de bruijin graphs. Genome Research, v.18, p. 821–829, 2008. DOI: https://doi.org/10.1101/gr.074492.107

ZHANG, J.; CHIODINI, R.; BADR, A.; ZHANG, G. The impact of next-generation sequencing on genomics. Journal of genetics and genômics, v. 38, n. 3, p.96-109, 2011. DOI: https://doi.org/10.1016/j.jgg.2011.02.003.

ZHANG, L. et al. Advances in metagenomics and its application in environmental microorganisms. Frontiers in microbiology, v. 12, p. 766364, 2021. DOI: https://doi.org/10.3389/fmicb.2021.766364.

ZHANG,H.; SUN, Z.; LIU, B.; XUAN, Y.; JIANG, M.; PAN, Y.; ZHANG, Y.; GONG, Y.; LU, X.; YU, D.; KUMAR, D.; HU, X.; CAO, G.; XUE, R.; GONG, C. Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors. Aquaculture, v.455, p.97-108, 2016. DOI: https://doi.org/10.1016/j.aquaculture.2016.01.011.

ZIMMER, A.; DURAND, C.; LOIRA, N.; DURRENS, P.; SHERMAN, D. J.; MARULLO, P. QTL. Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae adaptation to sulfite. Plos One, v.9, 2014. DOI: https://doi.org/10.1371/journal.pone.0086298

Published

2024-09-23

How to Cite

SANTANA FILHO, Djalma Moreira. Next-Generation Sequencing (NGS): new technologies to access microbial communities. Revista Macambira, [S. l.], v. 8, n. 1, p. 1–27, 2024. DOI: 10.35642/rm.v8i1.1248. Disponível em: https://revista.lapprudes.net/RM/article/view/1248. Acesso em: 23 nov. 2024.