High-dose irrigation stimulates the vegetative growth of Myrteola nummularia established in the central-southern zone of Chile
DOI:
https://doi.org/10.35642/rm.v9i1.1693Keywords:
Photosynthesis, stomatal conductance, chlorophyll, antioxidantsAbstract
Understanding the water requirements of fruit species is essential due to global water scarcity. In Chile, there are native species with antioxidant-rich fruits, such as Myrteola nummularia, which are found in the wild and whose physiological and morphological behaviour in response to irrigation has not been studied. The effect of different irrigation doses, T1: 0%, T2: 50%, T3: 100% and T4: 150% of reference evapotranspiration (ETo) on M. nummularia established in Chile was evaluated. Various physiological and vegetative growth variables were analysed. In terms of physiological variables, no significant differences were observed during the day, although there were some specific variations. At 15:00, stomatal conductance was 46.6% and 52.7% higher under 150% ETo compared to 50% and 100% ETo. At 09:00, the maximum quantum yield of photosystem II was 11.5% higher with 0% ETo than with 50% ETo. The chlorophyll index did not show significant differences. In vegetative development, the highest doses (100% and 150% ETo) significantly increased height compared to no irrigation, with increases of 71.9% and 66.2%, respectively. However, the 150% ETo treatment significantly reduced branch length compared to 100% and 50% ETo, being 58.9% and 59.6% lower. It was concluded that irrigation at 100% ETo allows for adequate leaf development and efficient water use to establish young M. nummularia orchards as a new fruit alternative for central-southern Chile.
Downloads
References
AGROMETEOROLOGÍA, INIA. 2023. Agrometeorological data platform. Instituto de Investigaciones Agropecuarias (INIA), Chile. Available at: https://agrometeorologia.cl/RD. Accessed on: April 9, 2023.
BASHAR, K. K. (2018). Hormone dependent survival mechanisms of plants during post-waterlogging stress. Plant Signaling & Behavior, 13(10). https://doi.org/10.1080/15592324.2018.1529522
BETANCUR, M., RETAMAL-SALGADO, J., LÓPEZ, M. D., VERGARA-RETAMALES, R., SCHOEBITZ, M. (2022). Plant performance and soil microbial responses to irrigation management: a novel study in a calafate orchard. Horticulturae, 8(12), Article 12. https://doi.org/10.3390/horticulturae8121138
BETANCUR, M.; RETAMAL‑SALGADO, J.; LÓPEZ, M. D.; VERGARA‑RETAMALES, R.; SCHOEBITZ, M. 2024. Enhancing soil health and fruit quality in calafate orchards through sustainable amendments. Journal of Soil Science and Plant Nutrition, v. 24, n. 1, p. 1235–1249. Available at: https://doi.org/10.1007/s42729-024-01625-z. Accessed on: July 21, 2025.
CALDERÓN-ORELLANA, A., PLAZA-ROJAS, G., GERDING, M., HUEPE, G., KUSCHEL-OTÁROLA, M., BASTÍAS, R. M., ALVEAR, T., OLIVOS, A., CALDERÓN-ORELLANA, M. (2025). Productive, physiological, and soil microbiological responses to severe water stress during fruit maturity in a super high-density European plum orchard. Plants (Basel), 14(8), Article 1222. https://doi.org/10.3390/plants14081222
CASTRO-CAMBA, R., SÁNCHEZ, C., VIDAL, N., VIELBA, J. M. (2022). Plant development and crop yield: the role of gibberellins. Plants, 11, Article 2650. https://doi.org/10.3390/plants11192650
COHERENT MARKET INSIGHTS. 2025. Processed super fruits market analysis and forecast (2025–2032). Processed Super Fruits Market (CMI3956). Estimated value of USD 66.38 billion in 2025, projected to reach USD 99.15 billion by 2032, with a CAGR of 5.9%. Available at: https://www.coherentmarketinsights.com/market-insight/processed-superfruits-market-3956. Accessed on: July 01, 2025.
COLEBROOK, E. H., THOMAS, S. G., PHILLIPS, A. L., HEDDEN, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 217(1), 67–75. https://doi.org/10.1242/jeb.089938
COMISIÓN NACIONAL DE RIEGO (CNR). 2022. Sistemas de riego y manejo hídrico de cultivos. Programa de Capacitación y Transferencia Tecnológica en Riego para Pequeños Agricultores en las regiones del Biobío y La Araucanía. Universidad de Concepción, Facultad de Ingeniería Agrícola, Departamento de Recursos Hídricos. Chillán, Chile.
DAYER, S., SCHARWIES, J. D., RAMESH, S. A., SULLIVAN, W., DOERFLINGER, F. C., PAGAY, V., TYERMAN, S. D. (2020). Comparing hydraulics between two grapevine cultivars reveals differences in stomatal regulation under water stress and exogenous ABA applications. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00705
EHRET, D. L., FREY, B., FORGE, T., HELMER, T., BRYLA, D. R. (2012). Effects of drip irrigation configuration and rate on yield and fruit quality of young highbush blueberry plants. HortScience, 47(3), 414–421. https://doi.org/10.21273/HORTSCI.47.3.414
EL-SAYED, M. E. A., HAMMAM, A. A., FAYED, A. S. K., REBOUH, N. Y., ELDIN, R. M. B. (2024). Improving water use efficiency, yield, and fruit quality of Crimson Seedless grapevines under drought stress. Horticulturae, 10, Article 576. https://doi.org/10.3390/horticulturae10060576
FENG, L., YANG, X., ZHOU, X. (2023). Effects of shading on chlorophyll content and antioxidant activity in blueberry leaves. Journal of Berry Research, 13(1), 55–65. https://doi.org/10.3233/JBR-230001
FRESNO, D. H., MUNNÉ-BOSCH, S. (2023). Organ-specific responses during acclimation of mycorrhizal and non-mycorrhizal tomato plants to a mild water stress reveal differential local and systemic hormonal and nutritional adjustments. Planta, 258, Article 32. https://doi.org/10.1007/s00425-023-04192-2
HUANG, Z., ZHOU, L., CHI, Y. (2023). Spring phenology, rather than climate, dominates the trends in peak of growing season in the Northern Hemisphere. Global Change Biology, 29, 4543–4555. https://doi.org/10.1111/gcb.16758
İKİNCİ, A. 2025. Effects of climate change on fruit growing: risks and solutions for the future. International Journal of Environment and Climate Change, v. 15, n. 3, p. 268–284. Available at: https://doi.org/10.9734/ijecc/2025/v15i34772. Accessed on: July 01, 2025.
INSTITUTO NACIONAL DE ESTADÍSTICAS (INE). 2023. Agricultural and forestry census. INE. Santiago, Chile. Available at: https://www.ine.gob.cl/statistics/economic/agriculture-agribusiness-and-fishing/agricultural-census. Accessed on: July 01, 2025.
JALAKAS, P., TAKAHASHI, Y., WAADT, R., SCHROEDER, J. I., MERILO, E. (2021). Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. The New Phytologist, 232(2), 468–475. https://doi.org/10.1111/nph.17592
KAHLE, D., WICKHAM, H. (2013). ggmap: spatial visualization with ggplot2. The R Journal, 5, 144. https://doi.org/10.32614/RJ-2013-014
KATYAYINI, N. U., RINNE, P. L. H., TARKOWSKÁ, D., STRNAD, M., VAN DER SCHOOT, C. (2020). Dual role of gibberellin in perennial shoot branching: inhibition and activation. Frontiers in Plant Science, 11, Article 736. https://doi.org/10.3389/fpls.2020.00736
KERR, P. G. (2013). Plants and tuberculosis: phytochemicals potentially useful in the treatment of tuberculosis. pp. 45–64. In: KUMAR, M., VOLODYMYRIVNA, K. (Eds.), Fighting multidrug resistance with herbal extracts, essential oils and their components. London, UK: Elsevier.
KUBO, G. T. M., GUERRA, H. O. C., CHAVES, L. H. G., FERNANDES, J. D., DA SILVA, A. A. R., DE ANDRADE, J. N. F., LAURENTINO, L. G. S., MENDONÇA, A. J. T.,ARRUDA, T. F. L., ARAÚJO, M. S. F. (2024). Irrigation depth and biochar doses on the vegetative growth of cherry tomato. Brazilian Journal of Biology, 84, Article e283665. https://doi.org/10.1590/1519-6984.283665
LI, X., YAO, L., WANG, X., ZHANG, Y., ZHANG, G., LI, X. (2025). Mechanisms for cell survival during abiotic stress: focusing on plasma membrane. Stress Biology, 5(1), Article 1. https://doi.org/10.1007/s44154-024-00195-5
LÓPEZ, A. A. (2003). Phytochemistry and biological activities of selected Colombian medicinal plants. PhD thesis – University of British Columbia, Faculty of Graduate Studies, Vancouver, Canada.
MAXWELL, K., JOHNSON, G. N. (2000). Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659
MORENO, M. de J.; PINEDA, J.; COLINAS, M. T.; SAHAGÚN, J. 2020. Oxygen in the root zone and its effect on plants. Revista Mexicana de Ciencias Agrícolas, v. 11, n. 4, p. 931–943. Available at: https://doi.org/10.29312/remexca.v11i4.2128. Accessed on: July 01, 2025.
MOUSA, M. A., AL-QURASHI, A. D., IBRAHIM, O. H., ABO-ELYOUNSR, K. A., AAL, A. M. A., EL-SALHY, A. M., EL-BOLOK, T. K., ALI, M. A., ALI, E. F., ABOU-ZAID, E. A. (2025). Impact of irrigation regimes on growth and postharvest quality of pomegranates (Punica granatum L.) under conditions of newly reclaimed land. HortScience, 60(2), 172–181. https://doi.org/10.21273/HORTSCI18280-24
OHASHI, A. Y. P., et al. (2020). Irrigation management based on reference evapotranspiration for pre-sprouted plantlets of sugarcane cultivars. Bragantia, 79, 293–304. https://doi.org/10.1590/1678-4499.20190288
PAN, J., SHARIF, R., XU, X., CHEN, X. (2021). Mechanisms of waterlogging tolerance in plants: research progress and prospects. Frontiers in Plant Science, 11, Article 627331. https://doi.org/10.3389/fpls.2020.627331
PHILLIPS, D., WILLIAMSON, J., OLMSTEAD, J., LYRENE, P. (2020). Reproductive growth and development of blueberry. EDIS. https://doi.org/10.32473/edis-hs220-2020
PINTO, A. A.; FUENTEALBA-SANDOVAL, V.; LÓPEZ, M. D.; PEÑA-ROJAS, K.; FISCHER, S. U. 2022. Accumulation of delphinidin derivatives and other bioactive compounds in wild maqui under different environmental conditions and fruit ripening stages. Industrial Crops & Products, v. 184, Article 115064. Available at: https://doi.org/10.1016/j.indcrop.2022.115064. Accessed on: July 01, 2025.
PINTO, A. A.; FUENTEALBA-SANDOVAL, V.; LÓPEZ, M. D.; PEÑA-ROJAS, K.; FISCHER, S. U. 2022. Accumulation of delphinidin derivatives and other bioactive compounds in wild maqui under different environmental conditions and fruit ripening stages. Industrial Crops & Products, v. 184, Article 115064. Available at: https://doi.org/10.1016/j.indcrop.2022.115064. Accessed on: July 01, 2025.
PINTO‑MORALES, F.; RETAMAL‑SALGADO, J.; LÓPEZ, M. D.; ZAPATA, N.; VERGARA‑RETAMALES, R.; PINTO‑POBLETE, A. 2022. Accumulation of delphinidin derivatives and other bioactive compounds in wild maqui under different environmental conditions and fruit ripening stages. Agriculture, v. 12, n. 1, Article 98. Available at: https://www.mdpi.com/2077-0472/12/1/98. Accessed on: July 01, 2025.
QIAO, M., HONG, C., JIAO, Y., HOU, S., GAO, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants, 13(13), Article 1808. https://doi.org/10.3390/plants13131808
RADÜNZ, A. L., SCHEUNEMANN, L. C., KRÖNING, D. P., HERTER, F. G., REICHERT JUNIOR, F. W., RADUNZ, M., SILVA, V. N. (2018). Characterization of blueberry cultivar ‘Climax’. Acta Scientiarum. Biological Sciences, 40(1), Article e40472. https://doi.org/10.4025/actascibiolsci.v40i1.40472
RETAMAL-SALGADO, J., VÁSQUEZ, R., FISCHER, S., HIRZEL, J., ZAPATA, N. (2017). Decrease in artificial radiation with netting reduces stress and improves rabbit-eye blueberry (Vaccinium virgatum Aiton) productivity. Chilean Journal of Agricultural Research, 77, 226–233.
RUANGSANGARAM, T., CHULAKA, P., MOSALEEYANON, K., CHUTIMANUKUL, P., TAKAGAKI, M., LU, N. (2025). Effects of light intensity and irrigation method on growth, quality, and anthocyanin content of red oak lettuce (Lactuca sativa var. crispa L.) cultivated in a plant factory with artificial lighting. Horticulturae, 11(1), Article 75. https://doi.org/10.3390/horticulturae11010075
RUIZ, A., HERMOSÍN-GUTIÉRREZ, I., VERGARA, C., VON BAER, D., ZAPATA, M., HITSCHFELD, A., OBANDO, L., MARDONES, C. (2013). Anthocyanin profiles in South Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Research International, 51, 706.
SALEHI, B.; SHARIFI-RAD, J.; HERRERA-BRAVO, J.; SALAZAR, L. A.; DELPORTE, C.; BARRA, G. V.; CAZAR RAMÍREZ, M.-E.; LÓPEZ, M. D.; RAMÍREZ-ALARCÓN, K.; CRUZ-MARTINS, N.; MARTORELL, M. 2021. Ethnopharmacology, phytochemistry and biological activities of native Chilean plants. Current Pharmaceutical Design, v. 27, p. 953–970. Available at: https://doi.org/10.2174/1381612826666201124105623. Accessed on: July 21, 2025.
SCHÖNBECK, L. C., ARTEAGA, M., MIRZA, H., COLEMAN, M., MITCHELL, D., HUANG, X., ORTIZ, H., SANTIAGO, L. S. (2023). Plant physiological indicators for optimizing conservation outcomes. Conservation Physiology, 11(1), Article coad073. https://doi.org/10.1093/conphys/coad073
SCHYMANSKI, S. J., OR, D. (2016). Wind increases leaf water use efficiency. Plant, Cell & Environment, 39(7), 1448–1459. https://doi.org/10.1111/pce.12700
UNITED STATES DEPARTMENT OF AGRICULTURE (USDA). 2014. Keys to Soil Taxonomy. 12th ed. Government Printing Office, Washington, DC. ISBN 978-0-16-092321-0.
WANG, S., GUAN, K., WANG, Z., AINSWORTH, E. A., ZHENG, T., TOWNSEND, P., LI, K., MOLLER, C., WU, G., JIANG, C. (2021). Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy. Journal of Experimental Botany, 72(2), 341–354. https://doi.org/10.1093/jxb/eraa432
WANG, Y., CHEN, Y. (2020). Non-destructive measurement of three-dimensional plants based on point cloud. Plants, 9, Article 571. https://doi.org/10.3390/plants9050571
ZHAO, W., LIU, L., SHEN, Q., YANG, J., HAN, X., TIAN, F., WU, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8), Article 2127. https://doi.org/10.3390/w12082127
Downloads
Published
Issue
Section
License
Copyright (c) 1969 Revista Macambira

This work is licensed under a Creative Commons Attribution 4.0 International License.







